Model-Based Similarity Measure in TimeCloud
نویسندگان
چکیده
This paper presents a new approach to measuring similarity over massive time-series data. Our approach is built on two principles: one is to parallelize the large amount computation using a scalable cloud serving system, called TimeCloud. The another is to benefit from the filter-and-refinement approach for query processing, such that similarity computation is efficiently performed over approximated data at the filter step, and then the following refinement step measures precise similarities for only a small number of candidates resulted from the filtering. To this end, we establish a set of firm theoretical backgrounds, as well as techniques for processing kNN queries. Our experimental results suggest that the approach proposed is efficient and scalable.
منابع مشابه
A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملDetermining appropriate weight for criteria in multi criteria group decision making problems using an Lp model and similarity measure
Decision matrix in group decision making problems depends on a lot of criteria. It is essential to know the necessity ofweight or coefficient of each criterion. Accurate and precise selection of weight will help to achieve the intended goal.The aim of this article is to introduce a linear programming model for recognizing the importance of each criterion inmulti criteria group decision making w...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملEvaluation of Similarity Measures for Template Matching
Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...
متن کاملSHAPLEY FUNCTION BASED INTERVAL-VALUED INTUITIONISTIC FUZZY VIKOR TECHNIQUE FOR CORRELATIVE MULTI-CRITERIA DECISION MAKING PROBLEMS
Interval-valued intuitionistic fuzzy set (IVIFS) has developed to cope with the uncertainty of imprecise human thinking. In the present communication, new entropy and similarity measures for IVIFSs based on exponential function are presented and compared with the existing measures. Numerical results reveal that the proposed information measures attain the higher association with the existing me...
متن کامل